Formation of solitary waves and shocklets in a two-temperature electron k distributed plasma

¹Quaid-i-Azam University, Islamabad, Pakistan, ²International Islamic University, Islamabad, Pakistan, ³National Centre for Physics (NCP), Shahdara Valley Road, Islamabad, Pakistan, ⁴University of Campinas, Brazil.

Abstract ✤ Large-amplitude electron acoustic (EA) waves and shocklets are investigated in a two-temperature electron plasma. ✤ Dynamical cold electrons are described by the fully nonlinear continuity and momentum equations. Superthermal (hot) inertialess electrons are assumed to follow κ distribution in a background of static positive ions. $\partial_{ au}$ ✤ The fluid equations along with quasineutrality equation are solved to obtain a set of two characteristic wave equations that admit both analytical and numerical solutions. ↔ Variation due to hot electron superthermality and hot to cold electron density ratio strongly affects the nonlinear structures involving the negative potential, cold electron velocity and density profiles. • For $\tau=0$ symmetric solitary pulses are formed, which are developed into shocklets with the course of time. **Electron-acoustic Waves**

- □ EA waves occur in a two-temperature electron plasma containing hot and cold electron components neutralized by singly ionized positive ions.
- □ The wave oscillation frequency is higher than the ion plasma frequency.
- □ Phase velocity of the wave intermediates the cold and hot electron thermal speeds.
- On a cold electron timescale, positive ions assumed to be immobile only appearing in the equilibrium charge-neutrality condition, while inertialess hot electron pressure provides a restoring force to maintain the EA wave.
- □ In 1977, Watanabe and Taniuti established a theoretical study for EA waves to confirm its propagation in a collisionless unmagnetized two temperature electron plasma.
- □ The Fast Auroral SnapshoT (FAST) observations in the auroral regions (altitude < 4000 km), geotail, and the polar observations at higher altitude (between $\sim 2R_E$ and $8R_E$, R_E being earth's radius) auroral region confirm the existence of EAWs in several parts of magnetosphere
- EA waves are also observed in laser produced plasma

Governing Equations

- > Non Maxwellian unmagnetized collisionless plasma
- dynamical cold electrons
- interialess superthermal hot electrons uniformly distributed immobile positive ions
- ➤ Governing nonlinear 1D fluid equations for EA waves

$$\frac{\partial n_c}{\partial t} + \frac{\partial}{\partial x} \left(n_c u_c \right) = 0 \quad \text{Continuity equation} \quad \left(\frac{\partial}{\partial t} + u_c \frac{\partial}{\partial x} \right) u_c = \frac{e}{m_e} \frac{\partial \phi}{\partial x} \quad \text{Equation of motion}$$

$$\frac{\partial^2 \phi}{\partial x^2} = -4\pi e \left(n_i - n_c - n_h \right) \quad \text{Poisson equation} \quad n_h(\phi) = n_{ho} \left\{ 1 - \left(\kappa - \frac{3}{2} \right)^{-1} \frac{e\phi}{k_B T_h} \right\}^{-\kappa + \frac{1}{2}} \quad \text{superthermal (hot)}$$
electron density

 \succ The above set of equations can be normalized as.

$$\left(\frac{\partial}{\partial\tau} + U_c \frac{\partial}{\partial X}\right) N_c + N_c \frac{\partial U_c}{\partial X} = 0 \qquad (1) \qquad \left(\frac{\partial}{\partial\tau} + U_c \frac{\partial}{\partial X}\right) U_c - \frac{\partial\Phi}{\partial X} = 0 \qquad (2)$$

$$N_c = 1 + \beta - \beta [1 - \Phi/(\kappa - 3/2)]^{-\kappa + 1/2} \qquad (3)$$

> Scaled parameters used $\tau = t\omega_{pc}$ $X = x/\lambda_0$ $N_c = n_c/n_{c0}$ $U_c = u_c/v_{Th}$ $\Phi = e\phi/k_BT_h$ where $\beta = (n_{i0}/n_{c0}) - 1$ $\beta = n_{h0}/n_{co}$ $v_{Th} = (k_B T_h/m_e)^{1/2}$ $\lambda_0 = (k_B T_h/4\pi e^2 n_{c0})^{1/2}$ $\omega_{pc} = (4\pi n_{c0} e^2/m_e)^{1/2}$

Shocklets propagate with speed under Rankine- Hugoniot condition

 $\lambda_+(\Phi) = c_0$

notion

ensitv

distribution

Ismat Naeem^{1,2}, S.Ali^{3,} P.H.Sakanaka⁴ and Arshad.M.Mirza¹

Nonlinear Equations for large amplitude EA waves

By Substituting Eq. (3) into Eq. (1) and performing differentiations with respect to X and τ results the following set of nonlinear equations

$$\left(\frac{\partial}{\partial\tau} + U_c \frac{\partial}{\partial X}\right) U_c - \frac{\partial\Phi}{\partial X} = 0 \tag{4}$$

writing nonlinear equations (4) and (5) in matrix form

	+	U_c	$-\chi(\Phi)$	∂_X	Φ	= 0 (6	(\mathbf{C})	where	$\chi(\Phi) =$	$1+\beta-\beta[1-c_{\kappa}\Phi/(\kappa-1/2)]$
		-1	U_c		U_c		(6)			$c_{\kappa}\beta[1-c_{\kappa}\Phi/(\kappa-1/2)]$
	l		-			I				

Diagonalization of Matrix

Solution of nonlinear equation is found by following the **Diagonalization of Matrix** formalism. In order to diagonalize a matrix as a first step compute det $(A - \lambda I) = 0$ to obtain the eigen values as $\lambda_{\pm} = U_c \pm \sqrt{\chi(\Phi)}$

where
$$A = \begin{bmatrix} U_c & -\chi(\Phi) \\ -1 & U_c \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Determine diagonalizing matrix C such that $D = C^{-1}AC$ where D is a diagonal matrix consisting of eigen values on the main diagonal and zeros everywhere and C is a matrix consisting of column eigen vectors.

$$D = C^{-1}AC = \begin{bmatrix} \lambda_{+} & 0 \\ 0 & \lambda_{-} \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 1 \\ -\frac{1}{\sqrt{\chi(\Phi)}} & \frac{1}{\sqrt{\chi(\Phi)}} \end{bmatrix}$$

Multiply Eq.(6) by C^{-1} in the left-hand sid

e to obtain
$$\frac{\partial \Psi_{\pm}}{\partial \tau} + \lambda_{\pm} \frac{\partial \Psi_{\pm}}{\partial X} = 0$$
 where $\Psi_{\pm} = U_c \mp F(\Phi)$ with $F(\Phi)$

Generally, $\Psi_+(\Psi_-)$ represents a wave propagating along the positive (negative) x direction. To find wave solution, set Ψ_+ or Ψ_- equal to zero taking $\Psi_{-} = 0$ gives $U_{c} = -F(\Phi)$ which further leads to $\Psi_{+} = 2U_{c}$ Hence, wave equation can be expressed in terms of U_a and Φ , as

General solution for Eq.(7) is given by $\Phi = \Phi_0[X - \lambda_+(\Phi)\tau]$

$$v(shock) = [\Gamma_L(\Phi_L) - \Gamma_R(\Phi_R)/(\Phi_L - \Phi_R)]$$

$$v(shock) = [c_{0\kappa} + (B_{\kappa}\Phi_L)/2]$$

where
$$B_{\kappa} = -\sqrt{\beta c_{\kappa}} \left(\frac{3}{2} + \frac{d_{\kappa}}{2\beta} \right)$$
 $d_{\kappa} = \frac{(2\kappa + 1)}{(2\kappa - 1)}$ $c_{0\kappa} = \frac{1}{\sqrt{\beta c_{\kappa}}}$

Results and Discussion

(Φ)

• We have investigated the time evolution profiles of large amplitude non-stationary EA waves and numerically solved Eqn.(7) by setting an initial condition for the localized electrostatic potential as $\Phi = \Phi_{\rm m} {\rm sech}[{\rm X/d}]$ with its amplitude $\Phi_{\rm m} = -0.15$ and pulse width d=5. • We have chosen some typical numerical values of non-Maxwellian laboratory plasma e.g., $n_{h0} = 7 \times 10^7 \text{cm}^{-3}$, $n_{c0} = 2 \times 10^7 \text{cm}^{-3}$, $T_c = 0.7 \text{ eV}$, $T_h = 2.1 \text{eV}$, $\omega_{\rm pc} = 2.52 \times 10^8 \text{ rad/s}, v_{\rm Tc} = 3.50 \times 10^7 \text{ cm/s}, v_{\rm Th} = 6.07 \times 10^7 \text{ cm/s} \text{ and } \lambda_0 = 0.24 \text{ cm}$

• It is observed that the effective phase speed become large at a small value of κ .

• It is shown that at $\tau=0$ potential pulses overlap but this symmetry breaks for $\tau > 0$.

• Solitary pulses develops into shocks for $\tau > 0$ with increase self steepness and wave amplitude.

• The variation of the hot electron superthermality effects reduces the solitary and shock wave amplitudes and pulse widths with fixed hot to cold electron density ratio.

• Increase in hot to cold electron density ratio with fixed value of κ results an increase in the magnitude solitary and oscillatory shock waves.

References

1. B. Eliasson and P. K. Shukla, Phys. Rev. E 69, 067401 (2004) 2. K. Watanabe and T. Taniuti, J. Phys. Soc. Jpn. 43, 1819 (1977). 3. S. P. Gary and R. L. Tokar, Geophys. Res. Lett. 11, 1180 (1984); Phys. Fluids. 28, 2439 (1985). 4. M.A. Hellberg, R.L. Mace, R.J. Armstrong and G.Karlstad, J. Plasma. Phys. 64, 433 (2000).

Fig 3: (a) The normalized effective phase speed (b) normalized shock speed v(shock) are plotted against the kappa parameter in the range $3 \le \kappa \le 20$ with fixed β =3.5 and Φ = Φ _L=-0.15